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Model Checking

A B C
deadlock

Each component is modeled by a FSM

• Model Checking = systematic state-space exploration = exhaustive
testing

• Model Checking = check whether the system satisfies a
temporal-logic formula
• Example: G(p→ Fq) is an LTL formula

• Simple yet effective technique for finding bugs in hardware and
software designs
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Hardware Model Checking Today

Intel Pentium FDIV Bug

• Try 4195835− 4195835/3145727 ∗ 3145727
• In 94 Pentium, did not return 0, but 256

• Cost: $400 - $500 million

• E. M. Clarke, M. Khaira, X. Zhao:
“Word level model checking - avoiding the Pentium FDIV error” (DAC ’96)
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Hardware Model Checking Today

• Part of the standard toolkit for hardware design

• Intel has used it for production chips since Pentium 4

• For the Intel Core i7, most pre-silicon validation was done through
formal methods
• “Replacing Testing with Formal Verification in IntelR© CoreTM i7

Processor Execution Engine Validation” (CAV 2009)
• (i.e. Model Checking + Theorem Proving)

• Many commercial products
• IBM RuleBase, Synopsys Magellan, ...
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Software Model Checking Today

• Static driver verifier now a commercial Microsoft product
• http://www.microsoft.com/whdc/devtools/tools/sdv.mspx

• Java PathFinder used to verify code for mars rover
• Java PathFinder(NASA):
http://javapathfinder.sourceforge.net/

• This does not mean Model Checking is a solved problem
• Far from it
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Model Checking Genesis

Edmund M. Clarke, Joseph Sifakis, E. Allen Emerson
(Turing Award 2007)

• Clarke and Emerson, “Design and Synthesis of Synchronization
Skeletons using branching time temporal logic”, 1981

“Proof Construction is unnecessary in the case of finite state concurrent
systems and can be replaced by a model-theoretic approach which will
mechanically determine if the system meets a specification expressed in
propositional temporal logic”

• Jean-Pierre Queille and J. Sifakis, “A temporal logic to deal with
fairness in transition systems”, 1982
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Intellectual Roots

Two important developments preceded this paper

1. “Verification through exhaustive exploration of finite state models”

• G. V. Bochmann and J. Gecsei, “A unified method for the
specification and verification of protocols, 1977

2. “Development of Linear Temporal Logic and its application to
specifying system properties”

• A. Pnueli, The temporal semantics of concurrent programs, 1977
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Model Checking

The model checking approach (as characterized by Emerson)

• Start with a program that defines a finite state graph M

• Search M for patterns that tell you whether a specification f holds

• Pattern specification is flexible

• The method is efficient in the sizes of M and hopefully also f

• The method is algorithmic
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What exactly is a model?

Remember our friend `?

• What does this mean? ` x ∧ y ⇒ x

• The statement above can be established through logical deduction
• Axiomatic semantics and type theory are deductive

• The program, together with the desired properties make a theorem
• We use deduction to prove the theorem

• What about this; is it true? ` x+ y = 5

• We can not really establish this through deduction
• We can say whether it’s true or false under a given model

[x = 3, y = 2] |= x+ y = 5

You have seen this symbol too |=

• In operational semantics, the variable assignments were the model
• The program behavior was the theorem we were trying to prove

under a given model
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Basic Notions of Model Theory

• Consider the following sentence:

S := The class today was awesome

• Is this sentence true or false? That depends

• What class is “the class”? What day is “today”?

• We can give this sentence an Interpretation

I := The class is CSCI 740, Today is Wednesday Nov 15

• When an interpretation I makes S true we say that
• I satisfies S
• I is a model of S
• I |= S
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The Model Checking Problem

• We are interested in deciding whether I |= S for the special case
where
• I is a Kripke structure
• S is a temporal logic formula

• Today you get to learn what each of these things are

High level idea:

• Unlike axiomatic semantics, where the program was part of the
theorem,

• The program will now be the model
• Well, not the program directly, but rather a Kripke structure

representing the program
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Kripke Structures as Models

Kripke structure is a FSM with labels

Kripke structure = (S, S0, R, L)

• S = finite set of states

• S0 ⊆ S = set of initial states

• R ⊆ S × S = transition relation

• L : S → 2AP = labels each state with a set of atomic propositions
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Microwave Example

• A Kripke structure can describe an infinite process

• We can interpret it as an infinite tree

• S = {s1, s2, s3, s4}
• S0 = {s1}
• R =

{(s1, s2), (s2, s1), (s1, s4), (s4, s2),
(s2, s3), (s3, s2), (s3, s3)}

• L(s1) = {¬close,¬start,¬cooking}
• L(s2) = {close,¬start,¬cooking}
• L(s3) = {close, start, cooking}
• L(s4) = {¬close, start,¬cooking}

Can the microwave cook with the door open?
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Microwave Example

• A Kripke structure can describe an infinite process

• We can interpret it as an infinite tree
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We need a language to describe properties of paths down the
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Linear Temporal Logic

• Let π be a sequence of states in a path down the tree

• π := s0, s1, s2, · · ·
• Let πi be a subsequence starting at i

• We are going to define a logic to describe properties over paths
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Properties over States

State Formulas

• Can be established as true or false on a given state

• If p ∈ {AP} then p is a state formula

• If f and g are state formulas, so are (f ∧ g), (¬f), (f ∨ g)
• Ex. ¬closed ∧ cooking
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Path Formulas

• A state formula p is also a path formula
p(πi) := p(si)

• Boolean operations on path formulas are path formulas
(f ∧ g)(πi) := f(πi) ∧ g(πi)

Path Quantifiers

• Gf(πi) := globally f(πi) = forall k ≥ i.f(πk)
• (� another notation for G)

• Ff(πi) := eventually f(πi) = exists k ≥ i s.t. f(πk)
• (♦ another notation for F )

• Xf(πi) := next f(πi+1)

• (◦ another notation for X)

• f Ug(πi) := f until g = exists k ≥ i s.t.
g(πk) and f(πj) for i ≤ j < k

Given a formula f and a path π, if f(π) is true, we say π |= f
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